[This question paper contains 12 printed pages.]
Sr. No. of Question Paper : 3958 FC-2
Your Roll No................

Unique Paper Code : 12271202
Name of the Paper : Mathematical Methods for Economics - II
Name of the Course : B.A. (Hons.) Economics

Semester : II

Duration : 3 Hours
Maximum Marks : 75

Instructions for Candidates

1. Write your Roll No. on the top immediately on receipt of this question paper.
2. There are five questions in all.
3. All questions are compulsory.
4. Use of simple calculator is allowed.
5. All parts of a question should be answered together.
6. Answers may be written either in English or Hindi; but the same medium should be used throughout the paper.

छात्रों के लिए निर्देश

1. इस प्रश्न-पत्र के मिलते ही ऊपर दिए गए निर्धारित स्थान पर अपना अनुक्रमांक लिखिए ।
2. कुल पाँच प्रश्न हैं।
3. सभी प्रश्न अनिवार्य हैं।
4. साधारण कैलक्यूलेटर का उपयोग किया जा सकता है।
5. प्रत्येक प्रश्न के सभी भागों को एक ही स्थान पर हल कीजिए ।
6. इस प्रश्न-पत्र का उत्तर अंग्रेजी या हिंदी किसी एक भाषा में दीजिए, लेकिन सभी उत्तरों का माध्यम एक ही होना चाहिए।
7. Answer any four of the following :
(a) (i) If the set of vectors $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ is linearly dependent, then prove that the set of vectors $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)$ is also linearly dependent.
(ii) If the set of vectors (u, v, w) is linearly independent, then show that the set of vectors $(u+v, u-v, u-2 v+w)$ is also linearly independent.
(b) (i) Find the rank of matrix A when $x \neq y \neq z, x=y \neq z$ and $x=y=z$
$(x, y$ and $z \neq 0)$ where

$$
A=\left(\begin{array}{ccc}
1 & 1 & 1 \\
x & y & z \\
x^{2} & y^{2} & z^{2}
\end{array}\right)
$$

(ii) Show that every skew-symmetric matrix of any positive odd integral order is singular.
(c) (i) Determine whether the following pair of planes intersect : $x+2 y-3 z=6$ and $x+3 y-2 z=6$.
(ii) Find the equation of the line ' L ' passing through the point $P(1,-2,4)$ and perpendicular to the plane given by the equation $3 x+5 y+7 z=15$.
(d) Consider an input-output model with three industries A, B and C. Suppose that the input requirements are given by the following table :

	Industry A	Industry B	Industry C
Industry A	$\mathrm{a}_{11}=0.0$	$\mathrm{a}_{12}=0.2$	$\mathrm{a}_{13}=0.1$
Industry B	$\mathrm{a}_{21}=0.3$	$\mathrm{a}_{22}=0.0$	$\mathrm{a}_{23}=0.2$
Industry C	$\mathrm{a}_{31}=0.2$	$\mathrm{a}_{32}=0.1$	$\mathrm{a}_{33}=0.0$

The final demand is given by the vector $\left(\begin{array}{l}85 \\ 95 \\ 20\end{array}\right)$.
(i) What is the economic interpretation of the condition $\mathrm{a}_{\mathrm{ii}}=0$ for all i ?
(ii) What is the economic interpretation (if any) of the sum $a_{11}+a_{21}+a_{31}$?
(iii) What is the economic interpretation (if any) of the sum $\mathrm{a}_{21}+\mathrm{a}_{22}+\mathrm{a}_{23}$?
(iv) What is the economic interpretation of the element 95 in the final. demand vector?
(v) Write the Leontief system for this model.
(e) Consider the following linear system of equations:

$$
\begin{aligned}
& (q-1) x+p y=0 \\
& (1-q) x-p y=0 \\
& x+y=1
\end{aligned}
$$

(i) If p and q lie between 0 and 1 , how many solutions does this system have? Why?
(ii) Ignoring the condition that p and q must lie between 0 and 1 , find the values of p and q so that this system has no solution.

- निम्नलिखित में से किन्हीं चार के उत्तर दीजिए :
(क) (i) यदि सदिशों का समुचय $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ रेखीय निर्भर है तो सिद्ध कीजिए कि सदिशों का समुचय $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)$ भी रेखवीय निर्भर है ।
(ii) यदि सदिशों का समुचय $(\mathrm{u}, \mathrm{v}, \mathrm{w})$ रेखीय स्वतंत्र है तो दर्शाइए कि सदिशों का समुचय $(\mathrm{u}+\mathrm{v}, \mathrm{u}-\mathrm{v}, \mathrm{u}-2 \mathrm{v}+\mathrm{w})$ भी रेखीय स्वतंत्र है ।
(ख) (i) आव्यूह A कि कोटि ज्ञात कीजिए जब $x \neq y \neq z, x=y \neq z$ एवं $x=y=z \quad(x, y$ और $\mathrm{z} \neq 0$) जहाँ :

$$
A=\left(\begin{array}{ccc}
1 & 1 & 1 \\
x & y & z \\
x^{2} & y^{2} & z^{2}
\end{array}\right)
$$

(ii) दर्शाइए कि किसी घनात्मक विषम पूर्णांक क्रम का प्रत्येक विषमतलीय सममित आव्यूह विलक्षण है।
(ग) (i) निर्धारित कीजिए कि यद्यपि निम्नलिखित समतलों का युगल प्रतिच्छेद करता है :

$$
x+2 y-3 z=6 \text { एवं } x+3 y-2 z=6
$$

(ii) रेखा ' L ' की समीकरण ज्ञात कीजए जो बिन्दु $\mathrm{P}(1,-2,4)$ से गुज़तती हो तथा दिए हुए समतल समीकरण $3 \mathrm{x}+5 \mathrm{y}+7 \mathrm{z}=15$ के लम्बवत है ।
(घ) तीन उद्योगों A, B एवं C के साथ आगत-निर्गत मॉडल पर गौर कीजिए। मान लीजिए कि निम्नलिखित तालिका द्वारा आगत आवश्यकताएँ दी गई हैं:

	उद्योग A	उद्योग B	उद्योग C
उद्योग A	$\mathrm{a}_{11}=0.0$	$\mathrm{a}_{12}=0.2$	$\mathrm{a}_{13}=0.1$
उद्योग B	$\mathrm{a}_{21}=0.3$	$\mathrm{a}_{22}=0.0$	$\mathrm{a}_{23}=0.2$
उद्योग C	$\mathrm{a}_{31}=0.2$	$\mathrm{a}_{32}=0.1$	$\mathrm{a}_{33}=0.0$

अंतिम मांग एक सदिश द्वारा दिया गया है $\left(\begin{array}{l}85 \\ 95 \\ 20\end{array}\right)$.
(i) शर्त $\mathrm{a}_{\mathrm{ii}}=0$ सभी i के लिए की आर्थिक विवेचना क्या है ?
(ii) क्या योग $\mathrm{a}_{11}+\mathrm{a}_{21}+\mathrm{a}_{31}$ की (यदि कोई) आर्थिक विवेचना है ?
(iii) क्या योग $\mathrm{a}_{21}+\mathrm{a}_{22}+\mathrm{a}_{23}$ की (यदि कोई) आर्थिक विवेचना है ?
(iv) अंतिम मांग सदिश में सदस्य 95 की आर्थिक विवेचना क्या है ?
(v) इस मॉडल के लिए लयोंटिफ (Leontief) तंत्र लिखिए ।
(ङ) निम्नलिखित रेखीय समीकरणों के निकाय पर गौर कीजिए :

$$
\begin{aligned}
& (q-1) x+p y=0 \\
& (1-q) x-p y=0 \\
& x+y=1
\end{aligned}
$$

(i) यदि p एवं $\mathrm{q}, 0$ एवं 1 के बीच रहते हैं तो इस निकाय के कितने हल निकलते हैं और क्यों ?
(ii) शर्तों की अवहेलना करते हुए कि p एवं q निश्चित रूप से 0 एवं 1 के बीच होने चाहिए, p एवं q का मूल्य निकालें जिससे कि इस निकाय का कोई हल नहीं हो ।
2. Answer any two of the following :
(a) Find the differential equation of the family of circles passing through the origin and having center on the x -axis.
(b) Solve the differential equation :

$$
\frac{d y}{d x}=\frac{x^{2}}{y^{2}}
$$

Find the solution to this equation that satisfies the initial condition $y(0)=2$.
(c) A set S in R^{2} is said to be convex if $x \in S, y \in S$, and $\lambda \in[0,1] \Rightarrow(1-\lambda) x+\lambda y \in S$. Using this definition, verify whether the following set is convex (A diagram is not a sufficient answer).
$S=\{(x, y): x y \leq 2, x \geq 0, y \leq 0\}$.

निम्नलिखित में से किन्हीं दो के उत्तर दीजिए :
(क) वृतो के समूह के अवकलन समीकरण को ज्ञात कीजिए जो मूल बिन्दु से निकलती हुई तथा x -अक्ष पर संकेंद्रित हो ।
(ख) अवकलन समीकरण को हल कीजिए :

$$
\frac{d y}{d x}=\frac{x^{2}}{y^{2}}
$$

इस समीकरण का हल ज्ञात कीजिए जो प्रारंभिक शर्त $\mathrm{y}(0)=2$ को संतुष्ट करता हो ।
(ग) R^{2} में एक समुचय S को उत्तल कहा जाता है यदि

$$
x \in S, y \in S \text {, एवं } \lambda \in[0,1] \Rightarrow(1-\lambda) x+\lambda y \in S
$$

इस परिभाषा का उपयोग करते हुए सत्यापित कीजिए कि यद्यपि निम्नलिखित समुचय उत्तल है (केवल रेखाचित्र इसका पूर्ण उत्तर नहीं है) ।

$$
S=\{(x, y): x y \leq 2, x \geq 0, y \leq 0\}
$$

3. Answer any two of the following :
(a) Sketch the level curves for the following functions at heights specified by k :
(i) $f(x, y)=x^{2}-y$, at the heights $k=0,2$.
(ii) $g(x, y\}=(y-2 x)^{2}$, at the height $k=4$.
(b) (i) If $z=f(x, y)$ and f is differentiable, $x=s+t$ and $y=s-t$, show that

$$
\left(\frac{\partial z}{\partial x}\right)^{2}-\left(\frac{\partial z}{\partial y}\right)^{2}=\frac{\partial z}{\partial s} \cdot \frac{\partial z}{\partial t}
$$

(ii) Decide which of the following functions are quasi-concave. Give reasons.
(a) $y=5 x+7$
(b) $z=\ln \left(x_{1}{ }^{a_{1}} x_{2}^{a_{2}}\right)\left(\right.$ where $\left.x_{2}>0, x_{2}>0, a_{1}>0, a_{2}>0\right)$
(c) (i) The demand for good X_{1} is given by:

$$
\mathrm{x}_{1}=\mathrm{m}^{\mathrm{b}_{1}} \mathrm{p}_{1}^{-\mathrm{a}_{11}} \mathrm{p}_{2}^{\mathrm{a}_{12}} \quad\left(\mathrm{~m}>0, \mathrm{p}_{1}>0, \mathrm{p}_{2}>0\right)
$$

The demand for good X_{2} is given by:

$$
\mathrm{x}_{2}=\mathrm{m}^{\mathrm{b}_{2}} \mathrm{p}_{1}^{\mathrm{a}_{21}} \mathrm{p}_{2}^{-\mathrm{a}_{22}} \quad\left(\mathrm{~m}>0, \mathrm{p}_{1}>0, \mathrm{p}_{2}>0\right)
$$

(where $\mathrm{b}_{1}, \mathrm{~b}_{2}, \mathrm{a}_{11}, \mathrm{a}_{12}, \mathrm{a}_{21}, \mathrm{a}_{22}$ are positive constants, m is money income, p_{1} and p_{2} are per unit prices of goods X_{1} and X_{2} respectively). Find the direct as well as the cross partial price elasticities of demand for both goods. Determine whether the goods are substitutes or complements.
(ii) In a factory, the daily output is $Q=60 \mathrm{~K}^{1 / 2} \mathrm{~L}^{1 / 3}$ units, where K denotes the capital investment (in units of Rs. 1,000) and L is the size of the labour force (in worker-hours). The current capital investment is Rs. $9,00,000$ and 1,000 worker-hours of labour are used each day. Using differential, estimate the change in output that will result when capital investment is increased by Rs. 1,000 and labour decreased by 2 worker-hours.

निम्नलिखित में से किन्हीं दो के उत्तर दीजिए :
(क) k द्वारा दी गयी ऊँचाइयों के संगत में निम्नलिखित फलनों के स्तर वक्र बनाइए :
(i) $f(x, y)=x^{2}-y$, ऊँचाई $k=0,2$ पर ।
(ii) $\mathrm{g}(\mathrm{x}, \mathrm{y}\}=(\mathrm{y}-2 \mathrm{x})^{2}$, ऊँचाई $\mathrm{k}=4$ पर ।
(ख) (i) यदि $z=f(x, y)$ और f अवकलनीय है, $x=s+t$ और $y=s-t$, तो दर्शाइए कि :

$$
\left(\frac{\partial z}{\partial x}\right)^{2}-\left(\frac{\partial z}{\partial y}\right)^{2}=\frac{\partial z}{\partial s} \cdot \frac{\partial z}{\partial t}
$$

(ii) इंगित कीजिए कि निम्न में से कौन सा फलन अर्ध-अवतल है। कारण बताइए।
(क) $\mathrm{y}=5 \mathrm{x}+7$

(ग) (i) X_{1} वस्तु के लिए मांग फलन दिया गया है:

$$
x_{1}=m^{b_{1}} p_{1}^{-a_{11}} p_{2}^{a_{12}} \quad\left(m>0, p_{1}>0, p_{2}>0\right)
$$

X_{2} वस्तु के लिए मांग फलन दिया गया है :
$x_{2}=m^{b_{2}} p_{1}^{a_{2}} p_{2}^{-a_{22}} \quad\left(m>0, p_{1}>0, p_{2}>0\right)$
(जहाँ $\mathrm{b}_{1}, \mathrm{~b}_{2}, \mathrm{a}_{11}, \mathrm{a}_{12}, \mathrm{a}_{21}, \mathrm{a}_{22}$ घनात्मक स्थिरांक हैं, m मौद्रिक आय है, p_{1} एवं p_{2} क्रमश: X_{1} एवं X_{2} वस्तुओं की प्रति इकाई कीगतें हैं)। दोनों वस्तुओं के लिए प्रत्यक्ष और तिरही आंशिक कीमत लोचों को ज्ञात कीजिए। निर्धारित कीजिए कि यद्यपि वस्तुए प्रतिस्पर्धा हैं या पूरक।
(ii) एक कारखाने में प्रतिदिन का उत्पादन $\mathrm{Q}=60 \mathrm{~K}^{1 / 2} \mathrm{~L}^{1 / 3}$ इकाइयां हैं। यहाँ K पूँजी निवेश (रुपये 1,000 की इकाई में) तथा L मज़दूर बल (कार्य-घंटों में) को सूचित करता है । वर्तमान पूँजी निवेश रुपये $9,00,000$ है तथा मज़दूरी की 1,000 कार्य-घंटा प्रतिदिन उपयोग किया जाता है। अवकलन का उपयोग करते हुए उत्पादन में परिवर्तन का आकलन कीजिए जब पूँजी निवेश 1,000 रुपये द्वारा बढ़ाया जाता है तथा मज़दूर 2 कार्य-घंटा घटाया जाता है।
4. Answer any two of the following :
(a) (i) Find for which (x, y) the following function is well-defined (domain):

$$
f(x, y)=\frac{\sqrt{x+y+1}}{x-1}
$$

Hence, sketch the domain in the xy-plane.
(ii) Consider the following system of equations :

$$
\begin{aligned}
& z+w=x y \\
& z w=x+y
\end{aligned}
$$

Find the differentials of z and w expressed in terms of $d x$ and $d y$.
(b) (i) Find the directional derivative of the function :

$$
f(x, y)=\frac{x}{x+y}
$$

at $P(1,0)$ in the direction from P to $Q(-1,-1)$. In what direction does f have the maximum rate of increase? What is the maximum rate of increase?
(ii) Find the equation for the plane that is tangent to the given surface $\mathrm{z}=\ln \left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)$ at the point $(1,0,0)$.
(c) Consider the following system of equations:

$$
\begin{aligned}
& x y-w=0 \\
& y-w^{3}-3 z=0 \\
& w^{3}+z^{3}-2 z w=0
\end{aligned}
$$

The point $\mathrm{P}=(\mathrm{x}, \mathrm{y}, \mathrm{w} ; \mathrm{z})=\left(\frac{1}{4}, 4,1 ; 1\right)$ is a solution. Apply the implicit function theorem to prove that the system defines x, y and w as continuously differentiable functions of z in the neighbourhood of P. Find $\frac{\partial x}{\partial z}$.

निम्नलिखित में से किन्हीं दो के उत्तर दीजिए :
(क) (i) ज्ञात कीजिए कि किस (x, y) कि लिए निम्नलिखित फलन पूर्णत: परिभाषित है (परास) :

$$
f(x, y)=\frac{\sqrt{x+y+1}}{x-1}
$$

इससे $x y$-समतल पर परास का रेखाचित्र बनाइए ।
(ii) निम्नलिखित समीकरणों के निकाय पर गौर कीजिए :

$$
\begin{aligned}
& z+w=x y \\
& z w=x+y
\end{aligned}
$$

z और w के अवकलनों को $d x$ एवं $d y$ के रूप में ज्ञात कीजिए ।
(ख) (i) $f(x, y)=\frac{x}{x+y}$
के दिशात्मक अवकलन ज्ञात कीजिए जो बिन्दु $P(1,0)$ पर P से $Q(-1,-1)$ की दिशा में है। किस दिशा में f की वृद्धि की दर सर्वाधिक होगी ? वह सर्वाधिक वृद्धि की दर क्या है ?
(ii) समतल के लिए समीकरण ज्ञात कीजिए जो दिए हुए सतह $\mathrm{z}=\ln \left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)$ को दिए हुए बिन्दु $(1,0,0)$ पर स्पर्श करती हो।
(ग) निम्नलिखित समीकरणों के निकाय पर गौर कीजिए:

$$
\begin{aligned}
& x y-w=0 \\
& y-w^{3}-3 z=0 \\
& w^{3}+z^{3}-2 z w=0
\end{aligned}
$$

बिन्दु $\mathrm{P}=(\mathrm{x}, \mathrm{y}, \mathrm{w} ; \mathrm{z})=\left(\frac{1}{4}, 4, \mathrm{l} ; 1\right)$ एक हल है। अस्पष्ट फलन प्रमेय का उपयोग करते हुए सिद्ध कीजिए की निकाय P के निकटतम में z का x, y एवं w सतत अवकलनीय फलन को परिभाषित करता है। $\frac{\partial x}{\partial z}$ को ज्ञात कीजिए।
5. Answer any three of the following :
(a) Find the extreme points and extreme values for $f(x, y)$ defined over S when :

$$
f(x, y)=e^{x^{2}-y^{2}} ; S=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}
$$

(b) Find the maximum and minimum values that the function $f(x, y)=x y$ takes on the constraint :

$$
\frac{x^{2}}{8}+\frac{y^{2}}{2}=1
$$

(c) A consumer's utility is a function of two goods x andy and is given by $U=\alpha \ln x+\beta \ln y$ (where α, β are positive constants)

The consumer's budget constraint is given by
$p x+q y=m$ (where p and q are per unit prices of goods x and y respectively, and m is money income).
(i) Using the Lagrangean method, find the optimal values of x andy as functions of p, q and m.
(ii) Check the second order condition.
(iii) Find the optimal value function $U^{*}(p, q, m)$. Find $\partial U^{*} / \partial m$ and give its economic interpretation.
(d) Let $f(x, y)=x^{2}+y^{2}+k x y$ where k takes values except 2 and -2 .

Find the stationary point of $f(x, y)$. Determine the values of the constant k for which this stationary point is
(i) a local minimum point
(ii) a saddle point.

निम्नलिखित में से किन्हीं तीन के उत्तर दीजिए :
(क) S पर परिभाषित $\mathrm{f}(\mathrm{x}, \mathrm{y})$ के चरम बिन्दु एवं चरम मूल्यों को ज्ञात कीजिए जब :

$$
f(x, y)=e^{x^{2}-y^{2}} ; S=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}
$$

(ख) फलन $f(x, y)=x y$ के लिए अधिकतम एवं न्यूनतम मूल्यों को ज्ञात कीजिए जिसकां प्रतिबन्ध $\frac{x^{2}}{8}+\frac{y^{2}}{2}=1$ है ।
(ग) एक उपभोक्ता के उपयोगिता दो वस्तुओं x और y के फलन
$\mathrm{U}=\alpha \ln \mathrm{x}+\beta \ln \mathrm{y}$ दिया हुआ है (जहाँ α एवं β घनात्मक स्थिरांक हैं।)
उपभोक्ता का बजट प्रतिबन्ध $\mathrm{px}+\mathrm{qy}=\mathrm{m}$ दिया हुआ है (जहाँ p और q क्रमश: x एवं y की प्रति इकाई कीमतें हैं तथा m मौद्रिक आय है) ।
(i) लग्रांज विधि का उपयोग करते हुए x और y के इष्टतम (optimal) मूल्यों को p, q एवं m के फलन के रूप में ज्ञात कीजिए ।
(ii) द्वितीय क्रम शर्त की जांच कीजिए ।
(iii) इष्टतम मूल्य फलन $\mathrm{U}^{*}(\mathrm{p}, \mathrm{q}, \mathrm{m})$ को ज्ञात कीजिए। $\partial \mathrm{U}^{*} / \partial \mathrm{m}$ को ज्ञात कीजिए तथा इसकी आर्थिक विवेचना को भी बताइए।
(घ) मान लीजिए $\mathrm{f}(\mathrm{x}, \mathrm{y})=\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{kxy}$ जहाँ k का मूल्य 2 एवं -2 के अतिरिक्त है । $\mathrm{f}(\mathrm{x}, \mathrm{y})$ के स्थिर बिन्दु ज्ञात कीजिए । स्थिरांक k के मूल्यों को निर्धारित कीजिए जिसके लिए यह स्थिर बिन्दु
(i) एक स्थानीय न्यूनतम बिन्दु
(ii) एक उदासीन बिन्दु है ।
[This question paper contains 12 printed pages] Your Roll No.
s1. No. of Q. Paper
Unique Paper Code
Name of the Course
:

Name of the Paper
: 8688
GC-4

Time : 3 Hours
Maximum Marks :

Instructions for Candidates :

(a) Write your Roll No. on the top immediately on receipt of this question paper.
इस प्रश्न-पन के प्राप्त होने पर तुरंत शीर्ष पर अपना रोल नंबर लिखें।
(b) Answer may be written either in English or in Hindi; but the same medium should be used throughout the paper. इस प्रश्न-पुत्न का उत्तर अंग्रेजी या हिन्दी किसी भी एक भाषा में दीजिए, लैकिन सभी उत्तर एक ही भाषा मे होने चाहिए।
(c) There are five questions in all. कुल पाँच प्रश्न हैं।
(d) All questions are compulsory. सभी प्रश्न अनिवार्य हैं।
(e) Use of simple calculator is allowed. साधारण कैलकुलेटर का उपयोग किया जा सकता है।
(f) All parts of a question should be answered together.
प्रत्येक प्रश्न के सभी भागों को एक ही स्थान पर हल कीजिए।
P.T.O.

1. Answer any four of the following :

निम्नलिखित में से किन्हीं चार के उत्तर दीजिए :
(a) (i) For any two non-zero vectors a and b, prove that:
कोई दो गैर-शून्य सदिशों a एवं b के लिए सिद्ध कीजिए कि :
$a . b=\frac{1}{4}\|a+b\|^{2}-\frac{1}{4}\|a-b\|^{2}$
(ii) Show that if the set of vectors $\left(\alpha_{1}, \alpha_{22}, \ldots \ldots . \alpha_{n}\right)$ is linearly independent and ($c_{1}, c_{2}, \ldots \ldots ., c_{n-1}$) are any scalars, then the set of vectors $\left(\alpha_{1}-c_{1} \alpha_{n}, \alpha_{2}-\right.$ $c_{2} \alpha_{n}, \ldots \ldots, \alpha_{n-1}-c_{n-1} \alpha_{n}$) is also linearly independent.
दर्शईइए कि यदि सदिशों का समुचय $\left(\alpha_{1}, \alpha_{2}, \ldots \ldots . \alpha_{\mathrm{n}}\right)$ रेखीय स्वतंत्र है और $\left(c_{1}, c_{2}, \ldots \ldots \ldots, c_{n-1}\right)$ कोई अदिश हैं तब सदिशों का समुचय $\left(\alpha_{1}-c_{1} \alpha_{n}, \alpha_{2}-c_{2} \alpha_{n}, \ldots \ldots, \alpha_{n-1}-\right.$ $\left.\mathrm{c}_{\mathrm{n}-1} \alpha_{\mathrm{m}}\right)$ भी रेखीय स्वतंत्र है।
(b) (i) A square matrix of zeros and ones in which the sum of elements in each row and each column is exactly one is called a Permutation matrix.
Show that any 2×2 Permutation matrix
' P ' is invertible and find its inverse. शून्यों (zeros) एवं एक (ones) का कोई वर्ग आव्यूह जिसमें प्रत्येक पंक्ति एवं प्रत्येक स्तंभ में सदस्यों का योग एक (one) होता है उसे क्रमचय आव्यूह (Permutation matrix) कहा जाता है। दर्शाइए कि कोई 2×2 क्रमचय आव्यूह ' P ' प्रतिलोमीय है और इसका प्रतिलोम ज्ञात कीजिए।
(ii) Show that any positive odd integral power of a skew-symmetric matrix is also skew-symmetric.
दर्शाइए कि एक विषमतलीय सममित आव्यूह की कोई धनात्मक विषम पूर्णांक घातांक भी विषमतलीय सममित है।
(c) (i) Find the equation of the line ' L ' passing through the points $P(1,3,2)$ and $Q(2,5,-6)$. Where does this line intersect the xy-plane ?
बिन्दु $P(1,3,2)$ एवं $Q(2,5,-6)$ से गुजरने वाली रेखा ' L ' के समीकरण को ज्ञात कीजिए। यह रेखा xy-समतल को कहाँ प्रतिच्छेद करती है ?
(ii) Verify the Cauchy-Schwarz inequality for two vectors $\mathrm{a}=(1,-2,4)$ and $\mathrm{b}=(6,1,-5)$. दो सदिशों $a=(1,-2,4)$ एवं $b=(6,1,-5)$ के लिए कउची-स्च्वारज (Cauchy-Schwarz) असमानता को सत्यापित कीजिए।
(d) Consider an input-output model with three industries A,B and C. Suppose that the input requirements are given by the following table :
तीन उद्योगों A, B एवं C के साथ आगत-निर्गत मॉडल पर गौर कीजिए। मान लीजिए कि निम्नलिखित तालिका द्वारा आगत आवश्यकताएँ दी गई हैं :

Industry A	Industry \mathbf{B} Industry \mathbf{C}	
उद्योग \mathbf{A}	उद्योग \mathbf{B}	उद्योग \mathbf{C}
$\mathrm{a}_{11}=0.0$	$\mathrm{a}_{12}=0.2$	$\mathrm{a}_{13}=0.3$

Industry A
$\mathrm{a}_{11}=0.0$

$$
\mathrm{a}_{12}=0.2
$$

$$
\mathrm{a}_{13}=0.3
$$

उद्योग A
Industry B

$$
a_{21}=0.4
$$

$$
a_{22}=0.0
$$

$$
a_{23}=0.5
$$

'उद्योग B
Industry C

$$
a_{31}=0.1
$$

$$
a_{32}=0.3
$$

$$
a_{33}=0.0
$$

उद्योग C
The final demand is given by a vector $\left(\begin{array}{c}1800 \\ 200 \\ 900\end{array}\right)$.
अंतिम माँग एक सदिश द्वारा दिया गया है $\left(\begin{array}{c}1800 \\ 200 \\ 900\end{array}\right)$.
(i) What is the economic interpretation of the condition $\mathrm{a}_{\mathrm{ii}}=0$ for all i ?
शर्त $a_{i j}=0$ सभी i के लिए की आर्थिक विवेचना क्या है ?
(ii) What is the economic interpretation (if any) of the sum $\mathrm{a}_{11}+\mathrm{a}_{21}+\mathrm{a}_{31}$? क्या योग $\mathrm{a}_{11}+\mathrm{a}_{21}+\mathrm{a}_{31}$ की (यदि कोई) आर्थिक विवेचना है ?
(iii) What is the economic interpretation (if any) of the sum $\mathrm{a}_{21}+\mathrm{a}_{22}+\mathrm{a}_{23}$?
क्या योग $\mathrm{a}_{21}+\mathrm{a}_{22}+\mathrm{a}_{23}$ की (यदि कोई) आर्थिक विवेचना है ?
(iv)What is the economic interpretation of the element 1800 in the final demand vector ? अंतिम माँग सदिश में सदस्य 1800 की आर्थिक विवेचना क्या है ?
(v) Write the Leontief system for this model. इस मॉडल के लिए लयोंटिफ (Leontief) तंत्र लिखिए।
(e) Show that the following system of equations :
दर्शाइए कि निम्नलिखित समीकरण निकाय
$\lambda \mathrm{x}+\mathrm{y}+\mathrm{z}=1$
$x+\lambda y+z=\lambda$
$x+y+\lambda z=\lambda^{2}$
has a unique solution provided $\lambda \neq-2$ and $\lambda \neq 1$. Find the solution. Explain the nature of the solution when $\lambda=1$.
का अद्वितीय हल है यदि $\lambda \neq-2$ एवं $\lambda \neq 1$. हल ज्ञात कीजिए। जब $\lambda=1$ है तो हल की प्रकृति को समझाइए।
2. Answer any two of the following : निम्नलिखित में से किन्हीं दो के उत्तर दीजिए :
(a) Show that any function $\mathrm{x}=\mathrm{x}(\mathrm{t})$ that satisfies the equation $(t-a)^{2}+x^{2}=a^{2}$ is a solution of the following differential equation :
दर्शाइए कि कोई फलन $x=x(t)$ जो समीकरण $(t-a)^{2}+x^{2}=a^{2}$ को संतुष्ट करता है, वो निम्नलिखित अवकलन समीकरण का एक हल है।
$2 \mathrm{tx} \frac{\mathrm{dx}}{\mathrm{dt}}+\mathrm{t}^{2}-\mathrm{x}^{2}=0$
(b) Show that the differential equation of the family of circles passing through the origin and having center on the y-axis is :
दर्शाइए कि वृत्तों के समूह जो मूल बिन्दु से गुजरती है एवं y -अक्ष पर संकेंद्रित है, उसकी अवकलन समीकरण निम्नलिखित है :
$\left(x^{2}-y^{2}\right) \frac{d y}{d x}-2 x y=0$
(c) A set S in R^{2} is said to be convex if $x \in S$, $y \in S$, and $\lambda \in[0,1] \Rightarrow(1-\lambda) x+\lambda y \in S$. Using this definition, verify whether the following set is convex (A diagram is not a sufficient answer).
R^{2} में एक समुचय S को उत्तल कहा जाता है यदि $x \in S, y \in S$ एवं $\lambda \in[0,1] \Rightarrow(1-\lambda) x+\lambda y \in S$ इस परिभाषा का उपयोग करते हुए सत्यापित कीजिए कि यद्यपि निम्नलिखित समुचय उत्तल है (केवल रेखाचित्र इसका पूर्ण उत्तर नहीं है)। $S=\{(x, y): \sqrt{x}+\sqrt{y} \leq 1\}$
3. Answer any two of the following:

निम्नलिखित में से किन्हीं दो के उत्तर दीजिए :
(a) Sketch the level curves for the following functions at heights specified by k :
k द्वारा दी गयी ऊँचाईयों के संगत में निम्नलिखित फलनों के स्तर वक्र बनाइए :
(i) $f(x, y)=y^{3}-x^{2}$, at the height $k=0$.
$f(x, y)=y^{3}-x^{2}$, ऊँचाई $k=0$ पर
(ii) $g(x, y)=y-\operatorname{In} x$, at the heights $k=0,2$. $\mathrm{g}(\mathrm{x}, \mathrm{y})=\mathrm{y}-\operatorname{In} \mathrm{x}$, ऊँचाई $\mathrm{k}=0,2$ पर
(b) (i) Suppose $\mathrm{z}=\mathrm{f}(\mathrm{x}, \mathrm{y})$ has continuous second-order partial derivatives with $x=r^{2}+s^{2}$ and $y=2 r s$.

Find $\frac{\partial z}{\partial r}$ and $\frac{\partial^{2} z}{\partial r^{2}}$.
P.T.O.

मान लीजिए $\mathrm{z}=\mathrm{f}(\mathrm{x}, \mathrm{y})$ जहाँ $\mathrm{x}=\mathrm{r}^{2}+\mathrm{s}^{2}$ और $\mathrm{y}=2 \mathrm{rs}$ के सतत द्वितीय स्तर आंशिक अवकलन हैं। $\frac{\partial z}{\partial r}$ एवं $\frac{\partial^{2} z}{\partial \mathrm{r}^{2}}$ ज्ञात कीजिए।
(ii) Let $z=x^{2}+3 x y-y^{2}$. Suppose x changes from 2 to 2.01 and y changes from 3 to 2.98. Find and compare the values of Δz and dz.
मान लीजिए $z=x^{2}+3 x y-y^{2}$ यदि x का मूल्य 2 से 2.01 परिवर्तित होता है और y का मूल्य 3 से 2.98 परिवर्तित होता है तो Δz और $d z$ के मूल्यों की तुलना एवं हल कीजिए।
(c) Consider the Cobb-Douglas production function $f(x, y)=x^{a} y^{b}(a, b$ are constants) defined for $x>0$ and $y>0$. Prove that f is concave if and only if it exhibits constant or decreasing returns to scale.
गौर कीजिए कि काब-डगलस (Cobb-Douglas) उत्पादन फलन $\mathrm{f}(\mathrm{x}, \mathrm{y})=\mathrm{x}^{\mathrm{a}} \mathrm{y}^{\mathrm{b}}$ (a और b स्थिरांक हैं) $\mathrm{x}>0$ और $\mathrm{y}>0$ के लिए परिभाषित है। सिद्ध कीजिए कि f अवतल है यदि और केवल यदि यह स्थिर तथा घटती हुई पैमाने का प्रतिफल को दर्शाती है।
4. (a) Answer any two of the following: 2×6 निम्नलिखित में से किन्हीं दो के उत्तर दीजिए :
(i) Find for which (x, y) the following function is well-defined (domain): $f(x, y)=x \ln \left(y^{2}-x\right)$.
Hence, sketch the domain in the $x y$-plane.

ज्ञात कीजिए कि किस (x, y) के लिए निम्नलिखित फलन पूर्णतः परिभाषित है (परास)।
$f(x, y)=x \operatorname{In}\left(y^{2}-x\right)$.
इससे $x y$-समतल पर परास का रेखाचित्र बनाइए।
(ii) Consider the function $f(x, y)=x e^{2 y-x}$. In what direction should one move from the point $(2,1)$ to increase the value of the function most rapidly? What is the maximum rate of increase ?
गौर कीजिए $f(x, y)=x e^{2 y-x}$. फलन के मूल्य में सर्वाधिक तेजी से वृद्धि के लिए बिन्दु $(2,1)$ से किस दिशा में चलना चाहिए ? सर्वाधिक वृद्धि की दर क्या है ?
(b) (i) Find the equation of the tangent plane and the normal line to the surface.
$f(x, y)=x^{2}+y^{4}+e^{x y}$ at the point $(1,0$, 2).

सतह के सामान्य रेखा एवं स्पर्श समतल का समीकरण ज्ञात कीजिए :
$f(x, y)=x^{2}+y^{4}+e^{x y}$ बिन्दु $(1,0,2)$ पर.
(ii) Consider the national income model described by the three equations.
$Y=C+I_{0}+G_{0}$
$\mathrm{C}=\alpha+\beta(\mathrm{Y}-\mathrm{T}) \quad(\alpha>0,0<\beta<1)$
$\mathrm{T}=\mathrm{y}+\delta \mathrm{Y} \quad(\gamma>0,0<\delta<1)$
Here Y is national income, C
9
P.T.O.
consumption, I_{o} investment, G_{0} public expenditure and T tax revenue.

Find $\frac{\partial Y}{\partial I_{0}}$ and $\frac{\partial Y}{\partial G_{0}}$
राष्ट्रीय आय मॉडल के विश्लेषित तीन समीकरणों पर गौर कीजिए जहाँ Y राष्ट्रीय आय, C उपभोग, I_{0} निवेश, G_{0} सार्वजनिक व्यय तथा T कर आगम है।
$\mathrm{Y}=\mathrm{C}+\mathrm{I}_{\mathrm{o}}+\mathrm{G}_{\mathrm{o}}$
$\mathrm{C}=\alpha+\beta(\mathrm{Y}-\mathrm{T}) \quad(\alpha>0,0<\beta<1)$
$T=y+\delta Y \quad(\gamma>0,0<\delta<1)$
$\frac{\partial \mathrm{Y}}{\partial \mathrm{I}_{0}}$ तथा $\frac{\partial \mathrm{Y}}{\partial \mathrm{G}_{0}}$ ज्ञात कीजिए।
(c) Which of the following functions are 1 homogeneous/homothetic ? Give reasons
f for your answers.
f निम्नलिखित में से कौन-सा फलन समरूप ((homogeneous) या होमोथेटिक (homothetic) है ? अ अपने उत्तरों के लिए कारण बताइए।
(i (i) $f(x, y)=e^{x^{2} y}, e^{x y^{2}}$
(i (ii) $h(x, y)=\ln \left(x^{2} / y^{2}\right),(x \neq 0, y \neq 0)$.
5. Ansuswer any three of the following : 3×7
निम्नलिलिखित में से किन्हीं तीन के उत्तर दीजिए :
(a) Let $f(x, y)=2 x^{2}-4 x+y^{2}-4 y+1$ be defined over the area bounded by the straight lines $x=0, y=2$ and $y=2 x$. Find and classify all the extreme points of this function. Also, find the extreme values of the function $f(x, y)$.
मान लीजिए $f(x, y)=2 x^{2}-4 x+y^{2}-4 y+1$ सीधी रेखाओं $\mathrm{x}=0, \mathrm{y}=2$ तथा $\mathrm{y}=2 \mathrm{x}$ द्वारा सीमित क्षेत्र के लिए परिभाषित है। इस फलन के लिए सभी चरम बिंदुओं को वर्गीकृत एवं ज्ञात कीजिए। फलन $f(x, y)$ की चरम मूल्यों को ज्ञात कीजिए
(b) Use the Lagrangean method to find the extreme values of $f(x, y)=x^{2}+2 y^{2}$ on the circle $x^{2}+y^{2}=1$.
लग्रांज विधि का उपयोग करते हुए वृत $\mathrm{x}^{2}+\mathrm{y}^{2}=1$, पर $f(x, y)=x^{2}+2 y^{2}$ के चरम मूल्यों को निकालिए।
(c) Find all the local extreme points and/or saddle points for the following function.
$f(x, y)=x^{3}+3 y^{3}-\frac{1}{2} x^{2}-2 x-9 y$.
निम्नलिखित फलन के सभी स्थानीय चरम व/या उदासीन बिन्दु ज्ञात कीजिए :

$$
f(x, y)=x^{3}+3 y^{3}-\frac{1}{2} x^{2}-2 x-9 y
$$

(d) A consumer faces the following utility maximization problem.
$\operatorname{Max} . \mathrm{U}(\mathrm{x}, \mathrm{y})=100-\mathrm{e}^{-\mathrm{x}}-\mathrm{e}^{-\mathrm{y}}$ subject to $\mathrm{px}+\mathrm{qy}=\mathrm{m}$ where $\mathrm{x}>0, \mathrm{y}>0$. Here, p and q are per unit prices of goods x and y respectively, and m is the consumer's money income.
एक उपभोक्ता निम्नलिखित उपयोगिता अधिक्तमिकरन समस्या का सामना करता है।
$\operatorname{Max} . U(x, y)=100-e^{-x}-e^{-y}$ यदि $p x+q y=m$, जहाँ $\mathrm{x}>0, \mathrm{y}>0$. यहाँ p और q क्रमशः वस्तु x और y की प्रति इकाई कीमतें हैं तथा m उपभोक्ता की मौद्रिक आय है।
(i) Find the necessary conditions for the solution of the problem and solve them for the two demand functions $x=f$ (p, q, m) and $y=g(p, q, m)$ by using the Lagrangean method.
लग्रांज विधि का उपयोग करते हुए $x=f(p, q, m)$ तथा $\mathrm{y}=\mathrm{g}(\mathrm{p}, \mathrm{q}, \mathrm{m})$ माँग फलनों के लिए हल कीजिए एवं हल के लिए आवश्यक शर्तों का पता लगाइए।
(ii) What happens to the optimal values of x and y if per unit prices of both goods and consumer's money income are doubled ?
x और y की इष्टतम (optimal) मूल्यों में क्या कोई परिवर्तन होगा यदि दोनों वस्तुओं की प्रति इकाई कीमतें तथा उपभोक्ता की मौद्रिक आय दोगुनी हो जाए ?

This question paper contains $\mathbf{1 6}$ printed pages]
Roll No.

S. No. of Question Paper 4645
Unique Paper Code 12271202 HC
Name of the Paper : Mathematical Methods for
Economics-II
Name of the Course : B.A. (Honours) Economics-CBCS
Semester IIDuration : 3 HoursMaximum Marks : 75(Write your Roll No. on the top immediately on receipt of this question paper.)Note :- Answers may be written either in English or in Hindi;but the same medium should be used throughout thepaper.

टिप्पणी : इस प्रश्न-पत्र का उत्तर अंग्रेज़ी या हिन्दी किसी एक भाषा में दीजिए; लेकिन सभी उत्तरों का माध्यम एक ही होना चाहिए।

Answer all questions. Choice is available within each question.
Use of simple calculator is permitted.
सभी प्रश्नों के उत्तर दीजिए।
सभी प्रश्नों के भीतर चयन उपलब्ध है।
साधारण कैल्कुलेटर का प्रयोग मान्य है।

1. Attempt any four from the parts (a) to (e) in this question: 4×5
(a) (i) For any two vectors x and y in \mathbf{R}^{n}, prove that

$$
|\|x\|-\|y\|| \leq\|x-y\| .
$$

(ii) Find the equation of the plane through the point $(-1,2,-5)$ that is perpendicular to the planes $2 x-y+z=1$ and $x+y-2 z=3$.
(b) (i) Does the following set of vectors span \mathbf{R}^{3} ? Why or why not ?
$v_{1}=(4,8,0), v_{2}=(2,3,1), v_{3}=(3,4,2)$, $v_{4}=(1,0,1)$.

What is the minimum number of vectors required to span \mathbf{R}^{3} ?
(ii) Prove that if a matrix A is orthogonal, then the determinant of A is ± 1. Prove also that the converse is not true.
(c) A system of linear simultaneous equations is given by : $x+2 y=10 ; 3 x+6 y=p ; q x+8 y=40$.
(i) Find the conditions on p and q for the system to be consistent.
(ii) In each case, specify the degrees of freedom of this system and how many of the equations are superfluous ?
(d) (i) Prove that if a linear system of equations has more than one solution, then it has infinitely many solutions.
(ii) An orthogonal matrix is a non-singular matrix A such that $A^{T}=A^{-1}$. Show that the determinant of an orthogonal matrix is ± 1.
(e) (i) Define the property of linear independence for a set of vectors $\left\{x_{1}, x_{2}, \ldots \ldots, x_{n}\right\}$.
(ii) Prove that the set of non-zero vectors $\left\{x_{1}, x_{2}, x_{3}\right\}$ is linearly independent if the three vectors are pair-wise orthogonal.

इस प्रश्न में भाग (a) से (e) में से किन्हीं चार के उत्तर दीजिए :
(a) (i) \mathbf{R}^{n} में किन्हीं दो सदिशों x व y हेतु सिद्ध कीजिए कि $|\|x\|-\|y\|| \leq\|x-y\|$.
(ii) बिन्दु $(-1,2,-5)$ से गुजरने वाले इस समतल (plane) का समीकरण ज्ञात कीजिए जो समतलों $2 x-y+z=1$ व $x+y-2 z=3$ के लम्बवर्त् (perpendicular) है।
(b) (i) क्या सदिशों का निम्नलिखित समुच्चय \mathbf{R}^{3} को पाटता (span) है ? क्यों या क्यों नहीं ?
$v_{1}=(4,8,0), v_{2}=(2,3,1), v_{3}=(3,4,2)$,
$v_{4}=(1,0,1)$.
\mathbf{R}^{3} को पाटने हेतु आवश्यक सदिशों की न्यूनतम संख्या क्या है ?
(ii) सिद्ध कीजिए कि यदि एक आव्यूह A लम्बवत् (orthogonal) है, तो A का सारणिक (determinant) ± 1 होगा। यह भी सिद्ध कीजिए कि इसका विपरीत सत्य नहीं होता।
(c) रेखीय युगपत समीकरणों का एक निकाय निम्न प्रकार है :

$$
x+2 y=10 ; 3 x+6 y=p ; q x+8 y=40
$$

(i) p व q पर उन शर्तों को ज्ञात कीजिए जो कि इस निकाय के संगत (consistent) होने हेतु आवश्यक हैं।
(ii) प्रत्येक मामले में इस निकाय की स्वातन्त्र्य कोटियाँ बताइए व यह भी बताइए कि कितने समीकरण अनावश्यक (superfluous) हैं ?
(d) (i) सिद्ध कीजिए कि यदि एक समीकरण निकाय के एक से अधिक हल हैं तो इसके हलों की संख्या अनन्त है।
(ii) एक लम्बवत् (orthogonal) आव्यूह (matrix) एक ऐसा अविलक्षण (non-singular) आव्यूह A होता है जिसके लिए $\mathrm{A}^{\mathrm{T}}=\mathrm{A}^{-1}$ । दर्शाइए कि एक लम्बवत् आव्यूह के सारणिक (determinant) का मान ± 1 होता है।
(e) (i) सदिशों के एक समुच्चय $\left\{x_{1}, x_{2}, \ldots \ldots, x_{n}\right\}$ हेतु रैखिक स्वतन्त्रता (linear independence) के गुण को परिभाषित कीजिए।
(ii) सिद्ध कीजिए कि अशून्य सदिशों का एक समूह $\left\{x_{1}, x_{2}, x_{3}\right\}$ रैखिकतः स्वतन्त्र होता है यदि ये तीन सदिश युग्मवार (pair-wise) लम्बवत् हों।
2.

Attempt any two from the parts (a) to (c) in this question : 2×5
(a). (i) The equation $x y+2 y z+3 z^{2}=6$ implicitly defines z as a function of x and y. Find the directional derivative of the function in the direction $(2,5)$ at the point $(1,1,1)$.
(ii) Find the value of the second order direct partial derivative of z with respect to y for the function in (i) above at $(1,1,1)$.
(b) (i) Calculate the rate of change in z at $t=0$ if $z=\frac{5 t^{2}+3 x y}{2 w^{2} y}, x=t^{2}+1, y=\sqrt{t^{2}+1}$, $w=e^{t}+1$.
(ii) Show that the equation of the tangent plane at the point $\left(x_{1}, y_{1}, z_{1}\right)$ on the surface $z=\sqrt{x y}$ is given by $y_{1} x+x_{1} y-2 z_{1} z=0$.
(c) (i) Draw the level curve for the function $f(x, y)=\sqrt{y^{2}-x^{2}}$ passing through $(3,5)$. Find the unit vector perpendicular to the level curve at this point.
(ii) State and sketch the domain for the function $f(x, y)=\sqrt{y-x} \ln (y+x)$.

इस प्रश्न में भाग (a) से (c) में से किन्हीं दो के उत्तर दीजिए :
(a) (i) समीकरण $x y+2 y z+3 z^{2}=6$ परोक्ष रूप से z को x व y के फलन के रूप में परिभाषित करता है। इस फलन का बिन्दु $(1,1,1)$ पर दिशा $(2,5)$ में दिशात्मक अवकलज (directional derivative) ज्ञात कीजिए।
(ii) भाग (i) में दिए गए फलन हेतु बिन्दु $(1,1,1)$ परु z का y के सापेक्ष द्वितीय क्रम का आंशिक अवकलज ज्ञात कीजिए।
(b) (i) यदि $z=\frac{5 t^{2}+3 x y}{2 w^{2} y}, x=t^{2}+1, y=\sqrt{t^{2}+1}$, $w=e^{t}+1$ हो, तो $t=0$ पर z में परिवर्तन की दर ज्ञात कीजिए।
(ii) दर्शाइए कि सतह (surface) $z=\sqrt{x y}$ के बिन्दु $\left(x_{1}, y_{1}, z_{1}\right)$ पर स्पर्शी समतल (tangent plane) का समीकरण $y_{1} x+x_{1} y-2 z_{1} z=0$ है।
(c) (i) फलन $f(x, y)=\sqrt{y^{2}-x^{2}}$ के $(3,5)$ से गुजरने वाले स्तर वक्र (level curve) को आरेखित कीजिए। इस बिन्दु पर स्तर वक्र के लम्बवत् इकाई सदिश ज्ञात कीजिए।
(ii) फलनों $f(x, y)=\sqrt{y-x} \ln (y+x)$ हेतु domain (परास) को लिखिए व आरेखित कीजिए।

Attempt any two from the parts (a) to (c) in this question : 2×6
(a) (i) An equilibrium model of labour demand and output pricing leads to the system of equations : $\mathrm{P} f^{\prime}(\mathrm{L})-w=0$ and $\mathrm{P} f(\mathrm{~L})=w \mathrm{~L}+c$, where f is twice differentiable with $f^{\prime}(\mathrm{L})>0$ and $f^{\prime \prime}(\mathrm{L})<0$. All the variables are positive. Regard w and c as exogenous so that P and L are endogenous variables which are functions of w and c around the point $\mathrm{A}(w, c, \mathrm{P}, \mathrm{L})=\left(w_{0}, c_{0}, \mathrm{P}_{0}, \mathrm{~L}_{0}\right)$. Find expressions for $\frac{\partial \mathrm{P}}{\partial w}, \frac{\partial \mathrm{P}}{\partial c}, \frac{\partial \mathrm{~L}}{\partial w}, \frac{\partial \mathrm{~L}}{\partial c}$ by implicit differentiation.
(ii) For the function $\mathrm{L}(w, c)$ in (i, find an approximation to $\mathrm{L}(w, c)$ at $\left(w_{1}, c_{1}\right)$ close to $\left(w_{0}, c_{0}\right)$.
(b) (i) State the definition of a homothetic function.
(ii) Are the functions f and g are homothetic. Give reasons.

$$
\begin{aligned}
& f\left(x_{1}, x_{2}, \ldots ., x_{n}\right)=\mathrm{A}\left(\delta_{1} x_{1}^{-\rho}+\delta_{2} x_{2}^{-\rho}+\ldots . .+\delta_{n} x_{n}^{-\rho}\right)^{-\frac{\mu}{\rho}} \\
& g\left(x_{1}, x_{2}\right)=2 \log x_{1}+5 \log x_{2}
\end{aligned}
$$

(c) (i) For the function $z=f(x, y)=\left(\frac{0.2}{x}+\frac{0.8}{y}\right)^{-1}$, evaluate the elasticity of substitution and verify Euler's theorem.
(ii) Is the sum of two quasi-concave functions necessarily quasi-concave? Why or why not ? इस प्रश्न में भाग (a) से (c) में से किन्हीं दो के उत्तर दीजिए :
(a) (i) श्रम की माँग व उत्पाद की कीमत के निर्धारण के एक साम्यावस्था मॉडल (equilibrium model) से निम्नलिखित समीकरण निकाय प्राप्त होता है : $\mathrm{P}^{\prime}(\mathrm{L})-w=0$ व $\mathrm{P} f(\mathrm{~L})=w \mathrm{~L}+c$, जहाँ f दो बार

अवकलनीय (twice differentiable) है, जिसमें $f^{\prime}(\mathrm{L})>0$ व $f^{\prime \prime}(\mathrm{L})<0$ । सभी चर धनात्मक हैं। मान लीजिए कि w व c बाह्यजात (exogenous) हैं जिससे कि P व L अन्तर्जात चर हैं जो कि बिन्दु $\mathrm{A}(w, c, \mathrm{P}, \mathrm{L})=\left(w_{0}, c_{0}, \mathrm{P}_{0}, \mathrm{~L}_{0}\right)$ के आसपास w व c के फलन हैं। परोक्ष अवकलन (implicit differentiation) की सहायता से $\frac{\partial \mathrm{P}}{\partial w}, \frac{\partial \mathrm{P}}{\partial c}, \frac{\partial \mathrm{~L}}{\partial w}, \frac{\partial \mathrm{~L}}{\partial c}$ हेतु व्यंजक ज्ञात कीजिए।
(ii) भाग (i) में फलन $\mathrm{L}(w, c)$ हेतु $\left(w_{0}, c_{0}\right)$ के समीप $\left(w_{1}, c_{1}\right)$ पर सन्निकटन ज्ञात कीजिए।
(b) (i) होमोथेटिक फलन (homothetic function) की परिभाषा लिखिए।
(ii) निम्नलिखित फलन f व g होमोथेटिक हैं या नहीं, इसका निर्धारण करने हेतु कारण दीजिए :

$$
\begin{aligned}
& f\left(x_{1}, x_{2}, \ldots ., x_{n}\right)=\mathrm{A}\left(\delta_{1} x_{1}^{-\rho}+\delta_{2} x_{2}^{-\rho}+\ldots . .+\delta_{n} x_{n}^{-\rho}\right)^{-\frac{\mu}{\rho}} \\
& g\left(x_{1}, x_{2}\right)=2 \log x_{1}+5 \log x_{2}
\end{aligned}
$$

(c) (i) फलन $z=f(x, y)=\left(\frac{0.2}{x}+\frac{0.8}{y}\right)^{-1}$ हेतु प्रतिस्थापन ? की लोच (elasticity of substitution) ज्ञात कीजिए व आयलर के प्रमेय (Euler'ṣ theorem) को सत्यापित कीजिए।
(ii) क्या दो अर्द्ध-अवतल (quasi-concave) फलनों का योगफल निश्चित तौर पर अर्द्ध-अवतल होता है ? क्यों या क्यों नहीं ?
4. Attempt any three from the parts (a) to (d) in this question : 3×7
(a) Find the critical points and classify them as local maxima, local minima and saddle point for the function $f(x, y)=\left(x^{2}+2 y\right): e^{-\left(x^{2}+y^{2}\right)}$.
(b) Find the maxima and minima of the function $g(x, y)=(2 x+4) e^{x^{2}-x}(2 y-1) e^{(y-2)^{2}}$ defined on the set S where S is rectangular region with vertices $(0,0),(0,1),(2,1)$ and $(2,0)$. x using inputs a and b. Use the Lagrangian method to find the amount of the factors required to produce an output \bar{x} at minimum cost, when prices of the inputs are p_{a} and p_{b}. Check the second order conditions and verify the envelope theorem.
(d) Find the closest point to the origin on the curve given by the equation $x^{2}+x y=1, x>0$. Also calculate the minimum distance. What is the rate of change in this distance as the constant 1 in the equation of the curve increases marginally.

इस प्रश्न में भाग $($ a $)$ से (d) में से किन्हीं तीन के उत्तर दीजिए :
(a) फलन $f(x, y)=\left(x^{2}+2 y\right) \cdot e^{-\left(x^{2}+y^{2}\right)}$ हेतु क्रान्तिक बिन्दुओं (critical points) को ज्ञात कीजिए तथा इन्हें स्थानीय उच्चिष्ठ (local maxima), स्थानीय निम्निष्ठ (local minima) व काठी बिन्दु (saddle point) के तौर पर वर्गीकृत कीजिए।
(b) समुच्चय S पर परिभाषित फलने $g(x, y) \stackrel{r}{=}(2 x+4) e^{x^{2}-x}(2 y-1) e^{(y-2)^{2}}$ हेतु उच्चिष्ठ (maxima) व निम्निष्ठ (minima) ज्ञात कीजिए जहाँ S , शीर्ष बिन्दुओं (vertices) $(0,0),(0,1),(2,1)$ व $(2,0)$ वाला आयताकार क्षेत्र (rectangular region) है।
(c) $x(a, b)=\mathrm{A} \sqrt{a b}$, आगतों a व b की सहायता से वस्तु x का उत्पादन फलन है। उत्पाद की मात्रा \bar{x} का न्यूनतम लागत पर उत्पादन करने हेतु आवश्यक कारकों (factors) की मात्राएँ लैग्रांजियन विधि (Lagrangian method) की सहायता से ज्ञात कीजिए, यदि आगतों की कीमतें p_{a} व p_{b} हैं। द्वितीय क्रम की शर्तों की जाँच कीजिए व आवरण प्रमेय (envelope theorem) को सत्यापित कीजिए।
(d) समीकरण $x^{2}+x y=1, x>0$ द्वारा निर्धारित वक्र पर मूल बिन्दु (origin) के समीपतम स्थित बिन्दु को ज्ञात कीजिए। इस न्यूनतम दूरी को भी ज्ञात कीजिए। समीकरण के स्थिरांक 1 में मामूली परिवर्तन से इस न्यूनतम दूरी में परिवर्तन की दर क्या है ?

1) 5. Attempt any two from the parts (a) to (c) in this question : 2×4
(a) Show that the function $y=(x+1)-\frac{e^{x}}{3}$ is a solution to the differential equation $\frac{d y}{d x}=y-x$, which satisfies the initial condition $y(0)=\frac{2}{3}$. Sketch the solution.
(b) For the differential equation $\frac{d y}{d t}=y^{2}-y-6$, draw the phase diagram and identify the equilibrium values. Identify which of the equilibria are stable.
(c) Verify whether the sets A and B are convex:
$\mathrm{A}=\left\{(x, y) \mid x^{2}+y^{2} \leq 16, x^{2}+y^{2} \geq 4\right\}$
$\mathrm{B}=\left\{(x, y) \left\lvert\, y \geq \frac{2 x+5}{x+2}\right., x>0\right\}$.
इस प्रश्न में भाग $($ a $)$ से (c) में से किन्हीं दो के उत्तर दीजिए :
(a) दर्शाइए कि फलन $y=(x+1)-\frac{e^{x}}{3}$, अवकल समीकरण (differential equation) $\frac{d y}{d x}=y-x$ का एक हल है, जो कि प्रारम्भिक शर्त (initial condition) $y(0)=\frac{2}{3}$ को सन्तुष्ट करता है। इस हल को आरेखित (sketch) कीजिए।
(b) अवकल समीकरण $\frac{d y}{d t}=y^{2}-y-6$ हेतु प्रावस्था आरेख (phase diagram) बनाइए तथा साम्यावस्था बिन्दुओं को ज्ञात कीजिए। कौनसी साम्यावस्थाएँ स्थायी हैं, पहचान कीजिए।
(c) समुच्चय A व B क्या उत्तल (convex) हैं, सत्यापित कीजिए :
$\mathrm{A}=\left\{(x, y) \mid x^{2}+y^{2} \leq 16, x^{2}+y^{2} \geq 4\right\}$
$\mathrm{B}=\left\{(x, y) \left\lvert\, y \geq \frac{2 x+5}{x+2}\right., x>0\right\}$.
|This question paper contains 15 printed pages)

Your Roll No.

- SI. No. of Q. Paper

Unique Paper Code
Name of the Course

Name of the Paper

Semester
Time: 3 Hours
Instructions for Candidates :
परीक्षार्थियों के लिए निर्देश :
(a) Write your Roll No. on the top immediately on receipt of this question paper.
इस प्रश्न-पत्र के प्राप्त होने पर तुरंत शीर्ष पर अपना रोल नंबर लिखें।
(b) Answer may be written either in English or in Hindi; but the same medium should be used throughout the paper.
इस प्रश्न-पत्र का उत्तर अंग्रेजी या हिंदी किसी एक भाषा में दीजिए, लेकिन सभी उत्तर एक ही भाषा में होने चाहिए।
P.T.O.
(c) Answer all questions. Choice is available within each questions.
सभी पाँच प्रश्नों के उत्तर दीजिए। सभी प्रश्नों के भीतर चयन उपलब्ध है।
(d) Use of simple calculator is permitted. साधारण कैल्कुलेटर प्रयोग करने की अनुमति है।

1. Attempt any four from the parts (a) to (e) in this question.
इस प्रश्न में भाग (a) से (e) में से किन्हीं चार के उत्तर दीजिए।
(a) (i) Prove that any set of k vectors in R^{n} is linearly dependent if $\mathrm{k}>\mathrm{n}$.
सिद्ध कीजिए कि में k सदिशों का कोई भी समुच्चय रैखिकत : निर्भर (linearly dependent) होता है यदि $\mathrm{k}>\mathrm{n}$.
(ii) Under what conditions is the lower triangular matrix of order $\mathrm{n} \times \mathrm{n}$ invertible? Prove, for a lower triangular matrix of order 3×3, that if the inverse exists, the inverse is also a lower triangular matrix. किन शर्तों के अधीन $\mathrm{n} \times \mathrm{n}$ क्रम का एक निम्न त्रिकोणात्मकं आव्यूह (lower triangular matrix) प्रतिलोमनीय (invertible) होता है ? सिद्ध कीजिए कि एक आर्डर 3×3 निम्न त्रिकोणात्मक मैट्रिक्स के लिए यदि प्रतिलोम (inverse) का अस्तित्व है, तो वह भी निम्न त्रिकोणात्मक होगा।
(b) (i) For what values of p does the system of equations :
$p x+y+4 z=2 ; 2 x+y+p^{2} z=2 ; x-3 z=p$
have a unique, none or infinitely many solutions.
p के किन मानों हेतु समीकरण निकाय :
$\mathrm{px}+\mathrm{y}+4 \mathrm{z}=2 ; 2 \mathrm{x}+\mathrm{y}+\mathrm{p}^{2} \mathrm{z}=2 ; \mathrm{x}-3 \mathrm{z}=\mathrm{p}$
का अद्वितीय हल होगा, कोई हल नहीं होगा या अनन्त हल होंगे।
(ii) Replace the vector of constants $(2,2, p)$ in part (i) above by $\left(b_{1}, b_{2}, b_{3}\right)$ to state a necessary and sufficient condition for the new system of equations to have infinitely many solutions.

उपरोक्त भाग (i) में स्थिरांकों के सदिश $(2,2, p)$ के स्थान पर $\left(b_{1}, b_{2}, b_{3}\right)$ लीजिए व इस नए समीकरण निकाय के अनन्त हल होने हेतु आवश्यक व पर्याप्त शर्तों को लिखिए।
(c) The 5000 consumers of a product are equally divided between brand A and brand B this year. However each year 10% of brand A consumers of the previous year shift to brand B whereas 20% of brand B consumers of the previous year shift to brand A. The total number of consumers remain fixed. Set out the problem in matrix form to answer the following :
इस वर्ष एक उत्पाद के 5000 उपभोक्ता ब्रांड A व ब्रांड B में विभाजित हैं। प्रतिवर्ष ब्रांड A के पिछले वर्ष के उपभोक्ताओं में से 10% ब्रांड B पर चले जाते हैं जबकि ब्रांड B के पिछले वर्ष के उपभोक्ताओं में से 20% ब्रांड A पर चले जाते हैं। उपभोक्ताओं की कुल संख्या स्थिर रहती हैं। इस समस्या को आव्यूहों के रूप में लिखिए व इसकी सहायता से निम्नलिखित प्रश्नों के उत्तर दीजिए।
(i) What is the proportion of brand A consumers after 2 years ?
2 वर्षों बाद ब्रांड A के उपभोक्ताओं का अनुपात क्या होगा ?
(ii) What was the proportion of brand A consumers last year ?
पिछले वर्ष ब्रांड A के उपभोक्ताओं का अनुपात क्या था ?
(d) (i) The plane P is perpendicular to the straight line $\frac{x-2}{3}=\frac{y+4}{5}=\frac{z-3}{2}$ and passes through (1, 5, 7). Find the equation of the plane P.
समतल (plane) P, रेखा $\frac{x-2}{3}=\frac{y+4}{5}=\frac{z-3}{2}$ के लम्बवत् (perpendicular) है तथा $(1,5,7)$ से गुजरती है। समतल P का समीकरण ज्ञात कीजिए।
(ii) If \vec{x} and \vec{y} are vectors of unit length, under what circumstances is the length of their difference equal to 2 ?
यदि \bar{x} व \bar{y} इकाई लम्बाई के दो सदिश हैं, तो किन परिस्थितियों में इनके अन्तर की लम्बाई 2 के बराबर होगी ?
(e) (i) How many different matrices of order 3×3 can be formed that are both diagonal and idempotent?
क्रम 3×3 के ऐसे कितने अलग-अलग आव्यूह बनाए जा सकते हैं जो कि विकर्णात्मक (diagonal) भी हों व आइडेम्पोटट (idempotent) भी ?
(ii) Describe the set of vectors spanned by the set of vectors A, B and C, where : सदिशां A, B व C , द्वारा पाटे गए (spanned) सदिशों के समुच्चय का वर्णन कीजिए जहाँ :

$$
\begin{aligned}
& A=\left\{\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right),\left(\begin{array}{l}
4 \\
5 \\
6
\end{array}\right) \cdot\left(\begin{array}{l}
7 \\
9 \\
8
\end{array}\right)\right\} ; B=\left\{\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right),\left(\begin{array}{c}
4 \\
8 \\
12
\end{array}\right),\left(\begin{array}{c}
7 \\
17 \\
21
\end{array}\right)\right\} ; \\
& C=\left\{\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right\}
\end{aligned}
$$

2. Attempt any two from the parts (a) to (c) in this question.
5×2 इस प्रश्न में भाग (a) से (c) में से किन्हीं दो के उत्तर दीजिए।
(a) (i) Specify the domain and provide a rough sketch of it for the function $f(x, y)=\ln \left(9-x^{2}-9 y^{2}\right)$. Also provide a rough sketch of the level curve at the height 4.
फलन $\mathrm{f}(\mathrm{x}, \mathrm{y})=\ln \left(9-\mathrm{x}^{2}-9 \mathrm{y}^{2}\right)$ का परास लिखिए व उसका एक रेखाचित्र बनाइए। ऊँचाई 4 पर इसके स्तर वक्र को भी आरेखित कीजिए।
(ii) State three different necessary and sufficient conditions for concavity of a function $f(x, y)$ that is continuousiv differentiable of order 2 and is defined on a convex domain
एक उत्तल परास (convex domain) पर परेभजित व क्रम 2 के सतत: अवकलनोध (cantinuously differentiable) ऊलन $f(x, y)$ के अवतलता (concavity) हेतु तीन अलन-अलग आदश्यक व पर्याप्त शतें लिखें
(b) (i) For the surface defined by the differentiable function $z=F \quad x, \frac{1}{x}$, show that the tangent plane at (x, y) intersects the z axis at $z=F\left(x_{1} \cdot \frac{y}{x_{1}}-F, \quad x_{1} \cdot \frac{y}{x_{1}} x\right.$

अवकलनीय फलन $z=F\left(x, \frac{y}{x}\right)$ द्वारी परिभाषेत सतह (surfae) हेतु दर्शाइए कि पर स्पर्शी तनतल (tangent plane) z अंक्ष को $\left.z=F\left(x_{1}, \frac{y}{x_{1}}\right)-F, x, \frac{y}{x_{1}}\right)$ पर प्रतिच्छेदित (intersect) करता है।
(ii) Draw a sketch of the level curve(s)to the function $f(x, y)=\frac{2 y}{x}+\left(\frac{y}{x}\right)^{2}$ at the height 3 cm or m . Is the function homothetic?

फलन $f(x, y)=\frac{2 y}{x}+\left(\frac{y}{x}\right)^{2}$ के ऊँचाई 3 cm or m पर स्तर वक्र (वक्रों) को आरेखित कीजिए। क्या यह फलन होमोथेटिक (homothetic) है ?
(c) The temperature at a point (x, y) on a metal plate in the $X-Y$ plane is $T(x, y)=\frac{x y}{1+x^{2}+y^{2}}$. $X-Y$ समतल में धातु की एक प्लेट के बिन्दु (x, y) पर तापमान $\mathrm{T}(\mathrm{x}, \mathrm{y})=\frac{\mathrm{xy}}{1+\mathrm{x}^{2}+\mathrm{y}^{2}}$ है।
(i) Find the rate of change of temperature at $(1,1)$ in the direction $(2,-1)$.
$(1,1)$ पर दिशा $(2,-1)$ में तापमान के परिवर्तन की दर ज्ञात काजिए।
(ii) An ant at $(1,1)$ wishes to walk in the direction in which the temperature drops most rapidly. Write down the unit vector in that direction.
$(1,1)$ पर रिथत एक चीटी उस दिशा में चलना चाहती है जिसमें तापमान सबसे तेजी से गिरता है। इस दिशा में इकाई सदिश लिखिए।
3. Attempt any two from the parts (a) to (c) in this question.
6×2
इस प्रश्न में भाग (a) से (c) में से किन्हीं दो के उत्तर दीजिए।
(a) Given that the function $f(x, y)$ is homogenous
of degree p, show that $\frac{\partial \mathrm{f}(\mathrm{x}, \mathrm{y})}{\partial \mathrm{x}}$ and $\frac{\partial \mathrm{f}(\mathrm{x}, \mathrm{y})}{\partial \mathrm{y}}$ are homogenous of degree $p-1$. Using this, or otherwise, prove that $\mathrm{x}^{2} \mathrm{f}_{\mathrm{xx}}^{*}+2 \mathrm{xyf}_{\mathrm{xy}}^{\prime \prime}+\mathrm{y}^{2} \mathrm{f}_{\mathrm{yy}}^{*}=\mathrm{p}(\mathrm{p}-1) \mathrm{f}(\mathrm{x}, \mathrm{y})$
दिया हुआ है कि फलन $f(x, y)$ कोटि p का समघात है, तो दर्शाइए कि $\frac{\partial f(x, y)}{\partial x}$ व $\frac{\partial f(x, y)}{\partial y}$ कोटि $p-1$ के समघात हैं। इसकी सहायता से, या अन्यथा सिद्ध कीजिए कि $x^{2} f_{x x}^{\cdot}+2 x y f_{x y}^{\prime \prime}+y^{2} f_{x y}^{*}=p(p-1) f(x, y)$
(b) (i) State the implicit function theorem. परोक्ष फलन प्रमेय (implicit function theorem) को लिखिए।
(ii) The function $f(x, y, z, u, v): \mathfrak{R}^{s} \rightarrow \mathfrak{R}^{2}$ is defined by the system of two equations: $u^{3} y z+2 x v-u^{2} v^{2}-2=0$; and $x y^{2}+x z u$ $+y v^{2}-3=0$, has a solution at $(x, y, z, u$, $v)=(1,1,1,1,1)$. Find the values of the endogenous variables u and v when $x=1.02, y=0.99$, and $z=1$ फलन $\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{u}, \mathrm{v}): 9 \mathrm{i}^{5} \rightarrow \cup \mathrm{R}^{2}$ जो कि दो समीकरणों के निकाय: $u^{3} y z+2 x v-u^{2} v^{2}-2=$ 0 ; व $x y^{2}+x z u+y v^{2}-3=0$, से परिभाषित है, का $(x, y, z, u, v)=(1,1,1,1,1)$ पर एक हल है। जब $\mathrm{x}=1.02, \mathrm{y}=0.99$, व $\mathrm{z}=1$ हों तो अन्तर्जात चरों (endogenous variables) u व v के मान ज्ञात कीजिए।
(c) State the definition for a quasi-concave function. Use the definition to test whether the following three functions are quasiconcave :
(i) $f(x)=x^{2}$
(ii) $g(x)=\sqrt{x}$
(iii) $h(x, y)=x^{2} y$ एक अर्ध अवतल (quasi-concave) फलन की परिभाषा लिखें । इस परिभाषा के इस्तेमाल से निम्नलिखित तीन फलनों के अर्ध अवतल होने का परीक्षण करें।
(i) $f(x)=x^{2}$
(ii) $g(x) \sqrt{x}$
(iii) $h(x, y)=x^{2} y$
4. Attempt any three from the parts (a) to (d) in this question.
इस प्रश्न में भाग (a) से (d) में से किन्हीं तीन के उत्तर दीजिए।
(a) Derive the conditions on α, β under which the function $\mathrm{f}(\mathrm{x}, \mathrm{y})=2 \mathrm{x}^{\alpha} \mathrm{y}^{\beta}, \alpha, \beta>0$ defined on the domain $x \geq 0, y \geq 0$ is :
α, β पर उन शर्तों को व्युत्पत्र कीजिए जिनके अधीन, परास $x \geq 0, y \geq 0$ पर परिभाषिएने फलन $f(x, y)=2 x^{\alpha} y^{\beta}, \alpha, \beta>0$.
(i) Strictly Concave
संख्तत: अवतल (Strictly Concave) है
(ii) Concave

अवतल (Concave) है
(iii) Quasi-concave

अर्द्ध-अवतल (Quasi-Concave) है
(iv) Convex

उत्तल (Convex) है।
(b) State the sufficient conditions for a function to possess both a global maxima and a global minima in its domain.

Find the global extreme points for the function $f(x, y)=x^{2} y^{3}$ defined on the set $\{(\mathrm{x}, \mathrm{y}) \mid \mathrm{x} \geq 1, \mathrm{y} \geq 2, \mathrm{x}+\mathrm{y} \leq 10\}$.

एक फलन के परास में वैश्विक उच्चिष्ट (global maxima) क वैश्विक निम्निष्ट (global minima) दोनों होने हेतु आवश्यक शर्तों को लिखिए।

समुच्चय $\{(\mathrm{x}, \mathrm{y}) \mid \mathrm{x} \geq 1, \mathrm{y} \geq 2, \mathrm{x}+\mathrm{y} \leq 10\}$ पर परिभाषित फलन $f(x, y) x^{2} y^{3}$ के वैश्विक चरम बिन्दु (extreme points) ज्ञात कीजिए।
(c) Find all stationary points of the function $f(x, y)=x^{3}+y^{2}-2 x y-2 x^{2}+x-y+4$ classify the stationary points as maxima, minima and saddle points.

फलन $\mathrm{f}(\mathrm{x}, \mathrm{y})=\mathrm{x}^{3}+\mathrm{y}^{2}-2 \mathrm{xy}-2 \mathrm{x}^{2}+\mathrm{x}-\mathrm{y}+4$ के सभी स्थिर बिन्दु (stationary points) ज्ञात कीजिए। इन बिन्दुओं को उच्चिष्ठ (maxima), निम्निष्ठ (minima) या काटी बिन्दु (saddle points) के तौर पर वर्गीकृत कीजिए।
(d) A point moves on the curve $\mathrm{x}^{2}+\mathrm{y}^{2}=100$. At what point is its distance from the point $(\mathrm{x}, \mathrm{y})=(10,8)$ minimum ? If the constant 100 in the equation of the curve were to be increased by one unit, what is the instantaneous effect on the minimum distance.

एक बिन्दु वक्र $\mathrm{x}^{2}+\mathrm{y}^{2}=100$ पर गति करता है। किस बिन्दु पर बिन्दु $(x, y)=(10,8)$ से इसकी दूरी न्यूनतम होगी ? यदि वक्र के समीकरण के स्थिर मान 100 को एक इकाई से बढ़ा दिया जाए तो इस न्यूनतम दूरी पर तात्क्षणिक (instantaneous) प्रभाव क्या होगा ?
5. Attempt any two from the parts (a) to (c) in this question.

इस प्रश्न में भाग (a) से (c) में से किन्हों दो के उत्तर दीजिए।
(a) Consider the differential equation $\frac{d y}{d t}=k\left(1-\frac{y}{m}\right) y$ where k and m are positive constants. Draw a phase line to determine if the equation possesses a stable equilibrium.

अवकल समीकरण (differential equation) $\frac{d y}{d t}=k\left(1-\frac{y}{m}\right) y$ पर विचार कीजिए जहाँ k व m धनात्मक स्थिरांक हैं। क्या इस समीकरण की स्थायी साम्यावस्था का अस्तित्व है, इसका निर्धारण करने हेतु एक प्रावस्था रेखा (phase line). को आरेखित कीजिए।
(b) Two sets A and B in \mathfrak{R}^{2} are defined as $A=\{(\mathrm{x}, \mathrm{y}) \mid \mathrm{xy} \geq 10\}$ and $\mathrm{B}=\left\{(\mathrm{x}, \mathrm{y}) 2 \mathrm{x}^{2}+\mathrm{y} \leq 0\right\}$. Draw a sketch of the sets to decide :
\mathfrak{M}^{2} में दो समुच्चय $\mathrm{A}=\{(\mathrm{x}, \mathrm{y}) \mid \mathrm{xy} \geq 10\}$ व $\mathrm{B}=\{(\mathrm{x}$, y) $2 x^{2}+y \leq 0$; द्वारा परिभाषित हैं । इ़ समुच्चयों के आरेख बनाइए व उन आरेखों की सहायता से निम्नलिखित प्रश्नों के उत्तर दीजिए :
(i) whether the sets A and B are closed and bounded.

क्या समुच्चय A व B बन्द (closed) व परिबद्ध (bounded) हैं।
(ii) whether the set $A \cap B$ is convex.

$$
\text { क्या समुच्चय } \mathrm{A} \cap B \text { उत्तल (convex) है। }
$$

(c) Show that $x(t)=C e^{51}+\frac{3}{5}$ is a solution to the differential equation $\frac{d x}{d t}=5 x-3$. Find the integral curve when $x(2)=1$.

दशाइए कि $\mathrm{x}(\mathrm{t})=\mathrm{Ce}^{\mathrm{jt}}+\frac{3}{5}$, अवकल समीकरण $\frac{\mathrm{dx}}{\mathrm{dt}}=5 \mathrm{x}-3$ का एक हल है। जंब $\mathrm{x}(2)=1$ हो, तो समाकल वक्र (integral curve) ज्ञात कीजिए।

